Temperature Modulates Tissue-Specification Program to Control Fruit Dehiscence in Brassicaceae
نویسندگان
چکیده
Plants respond to diurnal and seasonal changes in temperature by reprogramming vital developmental pathways. Understanding the molecular mechanisms that define environmental modulation of plant growth and reproduction is critical in the context of climate change that threatens crop yield worldwide. Here, we report that elevated temperature accelerates fruit dehiscence in members of the Brassicaceae family including the model plant Arabidopsis thaliana and important crop species. Arabidopsis fruit development is controlled by a network of interacting regulatory genes. Among them, the INDEHISCENT (IND) gene is a key regulator of the valve-margin tissue that mediates fruit opening, hence facilitating fruit dehiscence. We demonstrated that the valve-margin development is accelerated at higher temperature and that IND is targeted for thermosensory control. Our results reveal that IND upregulation is facilitated via temperature-induced chromatin dynamics leading to accelerated valve-margin specification and dispersal of the seed. Specifically, we show that temperature-induced changes in IND expression are associated with thermosensory H2A.Z nucleosome dynamics. These findings establish a molecular framework connecting tissue identity with thermal sensing and set out directions for the production of temperature-resilient crops.
منابع مشابه
The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.
Extensive studies on the dry fruits of the model plant arabidopsis (Arabidopsis thaliana) have revealed various gene regulators of the development and dehiscence of the siliques. Peach pericarp is analogous to the valve tissues of the arabidopsis siliques. The stone (otherwise called pit) in drupes is formed through lignification of the fruit endocarp. The lignified endocarp in peach can be sus...
متن کاملEvolution of fruit development genes in flowering plants
The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS ...
متن کاملConvergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae).
PREMISE OF STUDY Many angiosperms have fruit morphologies that result in seeds from the same plant having different dispersal capabilities. A prime example is found in the Brassiceae (Brassicaceae), which has many members with segmented or heteroarthrocarpic fruits. Since only 40% of the genera are heteroarthrocarpic, this tribe provides an opportunity to study the evolution of an ecologically ...
متن کاملThe Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence
BACKGROUND Several processes of plant development, such as abscission, pollen release, fruit dehiscence, and seed dispersal, require organs or tissues to physically disassociate or split open. Due to the immobility of plant cells, these processes occur through coordinated mechanisms of cell separation that are not found in animals. Arabidopsis produces dry dehiscent fruits (siliques) making it ...
متن کاملFruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy
Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2018